Part II: Stokes parameters
Slide 23
Stokes vector
The Stokes parameters can be arranged in a Stokes vector:
Linear polarization
Circular polarization
Fully polarized light
Partially polarized light
Unpolarized light
Part II: Stokes parameters, Stokes vectors
Slide 24
Pictorial representation of the Stokes parameters
Part II: Stokes parameters
Slide 25
Stokes vectors for linearly polarized light
LHP light
LVP light
+45º light
-45º light
Part II: Stokes parameters, examples
Slide 26
Stokes vectors for circularly polarized light
RCP light
LCP light
Part II: Stokes parameters, examples
Slide 27
(Q,U) to (P,)
In the case of linear polarization (V=0):
Part II: Stokes parameters
Slide 28
Mueller matrices
If light is represented by Stokes vectors, optical components are then described with Mueller matrices:
[output light] = [Muller matrix] [input light]
Part II: Stokes parameters, Mueller matrices
Slide 29
Mueller calculus (I)
Element 1 Element 2 Element 3
I’ = M3 M2 M1 I
Part II: Stokes parameters, Mueller matrices
Slide 30
Mueller calculus (II)
Mueller matrix M’ of an optical component with Mueller matrix M rotated by an angle :
M’ = R(- ) M R() with:
Part II: Stokes parameters, Mueller matrices
Slide 31
Jones formalism
Stokes vectors and Mueller matrices cannot describe interference effects. If the phase information is important (radio-astronomy, masers .), one has to use the Jones formalism, with complex vectors and Jones matrices:
Jones vectors to describe the polarization of light:
Jones matrices to represent optical components:
BUT: Jones formalism can only deal with 100% polarization .
Part II: Stokes parameters, Jones formalism, not that important here .
Slide 32
Complex index of refraction
Polarizers
Retarders
Slide 33